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a b s t r a c t

In semiconductor manufacturing, wafer quality control strongly relies on product monitoring and physical
metrology. However, the involved metrology operations, generally performed by means of scanning electron
microscopes, are particularly cost-intensive and time-consuming. For this reason, in common practice a
small subset only of a productive lot is measured at the metrology stations and it is devoted to represent the
entire lot. Virtual Metrology (VM) methodologies are used to obtain reliable predictions of metrology results
at process time, without actually performing physical measurements. This goal is usually achieved by means
of statistical models and by linking process data and context information to target measurements. Since
semiconductor manufacturing processes involve a high number of sequential operations, it is reasonable to
assume that the quality features of a givenwafer (such as layer thickness and critical dimensions) depend on
the whole processing and not on the last step before measurement only. In this paper, we investigate the
possibilities to enhance VM prediction accuracy by exploiting the knowledge collected in the previous
process steps. We present two different schemes of multi-step VM, along with dataset preparation
indications. Special emphasis is placed on regression techniques capable of handling high-dimensional
input spaces. The proposed multi-step approaches are tested on industrial production data.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, Virtual Metrology (VM) techniques have received
growing interest from semiconductor manufacturers, thanks to
the prospective measurement cost reduction and improvements
in production quality (by means of control schemes exploiting VM
information) [1].

The goal of a VM module is that of defining the relationships
between process data (input) and metrology data (output). Given
the cost of metrology operations and the increasing availability of
recorded data in modern equipment, reliable VM predictions are
used in place of real metrology measurements [2,3]. The inputs of
the VM algorithms are cost-free data like sensor data, logistic and
recipe information, while the predicted output is generally critical
dimensions (like layer thickness for Chemical Vapor Deposition,
Etch depth of Etch Rate for the Etching) upon which the goodness
of the performed process can be assessed. In this perspective, VM

tools are seen as information providers, able to yield probabilistic
information at process time on wafer quality features.

Thanks to the diffusion in the pasts years of VM modules and
the improvement of their prediction accuracy, nowadays VM
predictions are not only used to monitor process quality and to
decrease the number of physical measures performed, but they are
also exploited by intelligent tools like controllers [4,5], dispatching
and sampling decision systems [6] that can take advantage of VM
estimations to improve the overall process quality.

VM problems, and more in general, modeling of semiconductor
manufacturing process quality features, pose a number of chal-
lenges, among which the most prominent are the following:

� High-dimensionality: The number of potential input process para-
meters is usually large, given the high number of process variables
and even higher number of collected data/statistics and production
information. This issue may lead to ill-conditioned problems and
data over-fitting [7–9].

� Data fragmentation: The typical semiconductor manufacturing
production is highly fragmented. Hundreds of different pro-
ducts are processed with different machine settings (recipes) on
several tools that work in parallel, each one with different
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working stations (chambers) (see Fig. 1 for an example). A VM
system is required to model the entire production, but sepa-
rately modeling each logistic path (group of wafers with the
same combination of recipe, tool and chamber) is unfeasible
given the large amount of possible combinations versus the
historical data available.

� Multi-processes influence: The information regarding the out-
come of a process is related to both the process itself and
previous steps along the production line that may contain
information regarding the current state of the wafer or may
physically affect the outcome of the wafer feature in exam. For
instance, one physical reason of the superimposition of effects
of multiple processes on wafer features is the fact that wafer
fabrication is based on multiple layers build one on top of the
previous, with a possible concatenation of effects due to layer
surface disparities [10].

The first two issues are addressed in Section 2, where a brief
review of modeling techniques for VM is given. The main focus of
the paper is however on the last issue, namely, the influence of
multiple processes on the wafer features predicted by the VM
module (the VM targets), that has been only partly explored in the
VM literature [11,12]. Classical VM modules typically consider the
modeling of a single process only, that is, the last one before the
physical metrology step, without taking into account the influence
of the previous processes on the line may have on the physical/
electrical parameters that the VM module aims to predict. If data
regarding the previous processes can be retrieved and included in
the input set, it is reasonable to expect that the VM systems
prediction accuracy can be enhanced.

The resulting data collection problem is a difficult one. In fact,
from the modeling point of view, the collected multi-step data more
markedly present the aforementioned issues of high-dimensionality
and fragmentation. The increase in dimensionality is clearly related
to the inclusion of a larger number of parameters into the dataset,
that are related to the previous processing steps. To illustrate
the issue of data fragmentation, consider the example of Fig. 2
that regards three of the most important classes of semiconductor
processes, namely, Chemical Vapor Deposition (CVD), Lithography
(Litho), and Etching (Etch). The diagram represents a possible

process flow in the case of 11 different work-stations for the
aforementioned processes. Since different process tools can perform
the same process step for a specific wafer, the number of possible
paths grows exponentially with the number of steps. As a conse-
quence, a homogeneous dataset referred to a specific path would
comprise an insufficient number of observations.

In this paper we present a novel framework to address multi-
step VM situations similar to the one shown in Fig. 2. The
proposed approach relies on regularized machine learning meth-
odologies to deal with high-dimensionality, and on a multilevel
transformation of the input space to deal with data fragmentation.
The goal is that of estimating quality indicators of wafers that have
undergone several processes, by making use of data related to a
subset of those processes that may have influenced the VM target
(based on data availability and a priori physical knowledge).

The paper is organized as follows:

� Section 2.2 is devoted to review regularized machine learning
techniques with focus on Regularization Methods.

� In Section 3 a brief description of Multi-Level techniques is
provided and the proposed Multi-Step approaches are presented,
in terms both of dataset preparation and model assumptions.

� In Section 4 a user case is presented and the proposed
methodologies are validated exploiting a industrial manufac-
turing dataset.

Finally, in Section 5, final remarks and comments are provided.
This paper extends the results presented in [13].

2. Modeling techniques for VM

In this section, the basic features of the modeling techniques
employed for VM technologies are reviewed.

2.1. Literature review

Several features are required for a VM system to be successfully
employed in a production environment (i.e. scalability to new
production settings, fast computation, interpretability). Among
them, prediction accuracy is the first and most important one,
and consequently, the issue of modeling for VM has been at the
heart of the debate in the scientific community in the past years.

#0 (Equipment 1)

#1 (Process 1) #2 (Process 2)

#3 (A1) #4 (A2) #5 (B1) #6 (B2) #7 (C1) #8 (C2)

Fig. 1. Tree representation of a CVD (Chemical Vapor Deposition) tool with three
chambers (A, B, C) with two subchambers each (1 and 2), involved in two processes
(Process1 and Process 2). Therefore, for the processed wafers, twelve distinct
logistic configurations (i.e., paths) are possible.

Fig. 2. Example of process flow in semiconductor manufacturing: the black dashed
lines represent wafer dispatching events, while the solid blue lines represent
information flows. The Virtual Metrology (VM) block collects process data (x)
for several consecutive steps, and metrology data (y) for the latest step.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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Given the high complexity of the semiconductor processes
under investigation and the difficulties of physical based models
to capture all the relationships among the many parameters
involved, black-box approaches are usually taken for modeling.
Several statistical modeling and machine learning approaches,
both linear [14] and non-linear [3], have been tested and com-
pared in the literature in the past recent years.

There is a growing number of VM modules as more and more
new machine learning techniques for regression become available,
however, criticality's still exist, such as those associated with high-
dimensionality and data fragmentation, that are particularly rele-
vant when multiple processes are considered.

To deal with data fragmentation, few methods have been
proposed in the literature with regard to semiconductor manu-
facturing applications, such as:

� smart clustering (information theory [15] or PCA-based [2] for
example);

� multi-level techniques [16,17] (detailed in Section 3).

More attention has been given instead to the issue of high dimension-
ality, the main problem being how to handle VM problems with
hundreds or thousands of variables while avoiding overfitting and ill-
conditioning. A widely adopted approach for dealing with this issue is
a 2-step procedure composed by the following:

1. variable selection/model size reduction – the number of variables
is reduced by retaining those highlighted as important by
process engineers, those expressing the maximum amount
of variability in the input set [18], or by applying Principal
Component Analysis (PCA) and retaining the first principal
components only [3];

2. modeling – the regression algorithms are then applied to the
reduced dataset.

This approach allows complex and non-linear techniques to
be employed for modeling, like Artificial Neural Networks [19].
However, reduction of the input dataset may lead to suboptimal
results and it is generally a time consuming procedure, thus in
general preventing on-line recomputation, as often required in
industrial VM systems.

Other techniques deal with high-dimensionality directly within
the modeling step, like

� regularization methods (Ridge Regression (RR) [20], LASSO [14]
and Elastic Nets [12]), that impose a penalty on model com-
plexity to provide parsimonious models;

� sparse methods (Stepwise Selection [21], LARS [15] and LASSO,
that belongs to both classes) that generate models using a
subset only of the input variables.

In the present work, linear regularization methods (RR and
LASSO) are adopted, given that they are simple and capable of
computing models in a reasonable amount of time, while provid-
ing similar prediction performance of non-linear approaches [22].
Such techniques are briefly reviewed in the next subsection.

2.2. Linear methods for VM

The basic assumption in machine learning modeling is that the
information needed to build an accurate predictive model can be
learned from historical data. Given a training set of n examples

fxi; yi; i¼ 1;…;ng
with xiAR1�p and yiAR;

let XARn�p be a matrix of p-variate inputs, obtained by stacking
the fxig, and YARn be the associated real-valued output vector.
The modeling objective is to find a function f ð�Þ such that, given a
new observation fxnew; ynewg, a suitable norm of the difference
between f ðxnewÞ and ynew is small.

In the case in exam, linearity is assumed and f(x) is a linear
combination of the inputs xi with coefficients vector wARp, that
need to be estimated:

f ðxiÞ ¼ ∑
p

j ¼ 1
xi;jwj ð1Þ

where the coefficient wj is associated to the j-th input variable.
When dealing with high-dimensional VM problems, classical

approaches to linear modeling like Ordinary Least Squares suffer
from two main drawbacks:

(i) when only few observations are available (nCp), the estimated f
(x) might overfit or even interpolate the training examples;

(ii) the problem may be ill-conditioned or even singular, leading
to an unstable solution.

To overcome these issues, regularization techniques have been
developed. In general, such methodologies make additional assump-
tions on the complexity of f(x), to improve prediction accuracy [23].

Ridge Regression is, perhaps, the most popular regularized machine
learning algorithm. It consists in solving the following minimization
problem:

JRRðwÞ≔1
2
‖Y�Xw‖2þλ

2
w0w¼ RSSðwÞþλ

2
w0w ð2Þ

where λARþ is a regularization (hyper)parameter [24]. The larger the
value of λ, the smaller the “complexity” of the selected model (the
variance of the estimator) is, at the cost of worsening the perfor-
mances on the training set fX;Yg and introducing bias.

The RR problem (2) has a closed-form solution (see [24]) and
it is therefore easy to be solved, moreover, it efficiently deals
with the case of highly correlated dataset. On the other hand, the
entries of wRR (the coefficients of the RR model) related to
irrelevant input variables are shrunk without reaching zero. This
poses a potential threat when using an automatic prediction
system, as an outlying value in any of the input parameters would
result in completely wrong predictions.

To overcome such issue, a technique able to jointly select the
order of the model in a sparse fashion and estimate the coeffi-
cients has to be used. One possible way to achieve this goal is to
penalize the model coefficients w by using a ℓ1 norm. In this way,
the so-called curse of dimensionality is avoided, as well as the risk
of obtaining over-parametrized models [25]. The most popular
technique employing such regularization approach is the Least
Absolute Shrinkage and Selection Operator (LASSO) [26], that solves
the following optimization problem:

w¼ arg min
w

RSSðwÞ ð3Þ

with ∑
p

j ¼ 1
jwjjrλ: ð4Þ

This formulation allows to obtain a sparse solution for w (that
is, some entries of the selected w are 0) if λ is small enough. This
extremely convenient property of the LASSO allows for the
creation of low-order models even when the input space has high
dimension. Intuitively, stability of the prediction is improved
without sacrificing precision [27].

The hyper-parameter λ acts for both RR and LASSO as a tuning
knob: by selecting small values of λ, the amount of complexity allowed
in the model (and the number of selected variables in the LASSO)
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decreases. Depending on the nature of the dataset, the ‘optimal,’ trade-
off value of the regularization parameter is chosen as the one
minimizing the prediction accuracy in cross-validation. In the case
of LASSO, hard penalties provide models that are highly sparse, an
interesting feature in terms of model interpretability. There is no
closed-form solution to the minimization problem described in (3) and
(4), therefore, to train a predictor by using the LASSO, it is necessary to
resort to optimization techniques. Efficient implementations of the
LASSO are nowadays available, some of the most popular algorithm
are based on Sequential Minimization Optimization [28] and Least
Angle Regression (LARS) [29].

In Fig. 3 a simple semiconductor manufacturing dataset with
p¼10 variables [15] is considered. The coefficients of RR and
LASSO (implemented with LARS) vary with the level of complex-
ity: for large values of λ (enhanced model simplicity) the RR
coefficients are in fact shrunk close to each other, while at each
iteration of the LARS (more and more complexity allowed in the
model at each iteration) a new variable enters the LASSO solution.

In the present work, both RR and LASSO are taken into
consideration, since they are both effective in the VM problems
considered here. It is to be stressed that there is no way to state a
priori which of the two approaches performs best in terms of
prediction accuracy, computational time, and interpretability (see
[30,31] to this regard,) actual results heavily depend on the dataset
and requirements at hand.

3. Multistep virtual metrology

In this section, Multi-step VM problems are detailed and two
approaches for VM input space definition are presented. To better
clarify the Multi-Level paradigm that will be detailed, reference to
the following Multi-Step setup will be made.

(i) A production flow is defined as a sequence of process steps;
each step represents an operation to be performed on a wafer.
For illustrative purposes, we refer again to the example of
Fig. 2. The production flow in this case is defined by a CVD, a
lithography, and an etching step.

(ii) Each step can be performed by different tools and the knowl-
edge of which tool processed a specific wafer is avail-
able. Furthermore, each tool can be composed of different
chambers.

(iii) Each tool provides information about the processed wafer,
including sensor readings and recipe set points. It is assumed
that all the tools that deal with a certain step (for instance, all
the involved CVD equipment) provide homogeneous process
information.

(iv) ‘Single step’, classical VM modules can be implemented on
some tools to estimate key wafer features (for example,
the thickness of the deposited layer for the CVD) that are
generally measured only once in a lot (see Fig. 4).
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Fig. 3. Evolution of the RR and LARS coefficients with different complexity allowed in the model. Adapted from [15]. (a) RR coefficients' evolution and (b) LARS coefficients'
evolution.

G.A. Susto et al. / Computers & Operations Research 53 (2015) 328–337 331



In the following subsections, different multi-step approaches
are grouped according to the type of information required for their
application. The basic assumption is that, for the last step of
the considered production flow, whose metrology values are the
targets to be predicted (the VM targets), all relevant information is
available.

In the following, we consider a process consisting of γ sequen-
tial steps. The i-th step can be performed by ηi different tools,
while the total number of tools involved in the dataset is η:

η¼ ∑
γ

i ¼ 1
ηi: ð5Þ

In Fig. 5 we refer again to the example of CVD, Lithography and
Etching multi-step VM problem, where 4 CVD tools, 3 Lithography
tools and 4 Etching tools are available.

Data fragmentation could be avoided by using a unique model
for all the possible paths of the tree in Fig. 5, although suboptimal
predictions would be obtained, since differences among the tools
are not considered. On the other hand, having a model for every
distinct path is cost intensive (in the settings of Fig. 5, 48 models
should be computed, and a further degree of complexity would be
introduced if taking into account the presence of different pro-
ducts and chambers).

A possible approach to the problem is provided by Generalized
Additive Models (GAMs) [32], that are based on the idea of
modeling each logistic entity (each node of the tree) instead of
each different production flow (each path of the tree), to decrease

the number of distinctive models and to increase the number of
observations available for each model.

We introduce here the useful prediction flow related notation:

� γ is the production depth, i.e., the number of production steps
considered in the modeling. With reference to the example of
Fig. 5, γ ¼ 3, since 3 processes in sequence are considered (CVD,
Lithography and Etching);

� Ak ¼ fak1;…; akηk g is the set of available tools for the k-th
production step;

� η¼∑γ
k ¼ 1ηk is the total amount of different tools over the γ

considered processes.

γis then the number of processes that are considered in the multi-
level VM problem, where the γ-th step is the one after which the
VM target is measured.

In the following subsections two different multi-step approaches
are presented.

3.1. Process-based multistep

The i-th wafer fxi; yig is associated with the logistic path Pi, that
is the sequence of tools on which the wafer has been processed:

Pi ¼ fp0; pi1; pi2;…; piγg;

where pik ¼
0 if k¼ 0 Root ðcommon for all wafersÞ
pikAAk elsewhere

(
:

For example, with reference to the example of Fig. 5, if the i-th
wafer is processed on the tool CVD A, Litho C and Etch B, then
Pi ¼ f0;1;7;9g.

Following the Multilevel paradigm defined in [17], a GAM of the
form

f ðxiÞ ¼ ∑
kAPi

f kðxi;kÞ ð6Þ

is sought for, that is, the prediction is expressed as the sum of
independent effects connected to all the logistic entities involved
in the process. xi;k in (6) represents the input space for the wafer xi,
that is used to model f kð�Þ, and therefore, the effects of the k-th
process performed on the specific tool pk on the VM target. Let xi;pk
be the part of xi associated with the k-th process (sensor data
collected in the tool pk, logistic information associated, etc.). Then

xi;k ¼ ½xi;0 xi;p1 xi;p2 … xi;pk �; ð7Þ
since only the process/sensor data related to pk and the previous
process steps must be taken into account, ignoring what happens
in the future of the production flow.

The modeling goal is to estimate ηþ1 functions fk (that is,
as many functions as the number of different nodes of the tree,
including the root one, by means of which commonalities between
all the possible paths can be described) in a multitask learning
approach [33]. It should be noted that the number of functions to be
estimated may be reduced by exploiting data commonalities. In our
example, the number of functions to be estimated is 12 (the number
of nodes), instead of 48 (the number of paths). The underlying linear
effect superposition assumption is a strong one, but it brings
simplicity and reduction of problem dimensionality when perform-
ing VM in small datasets situations. In the case of Ridge Regression,
for example, the computational cost of each node function fk is
Oðnm2

k Þ, where n is the overall number of observations and mk is the
number of variables of the k-th production step. Classical VM
approaches have instead a computational cost of Oðnim2

TOTÞ for each
path, where ni is the number of the observations associated with the
path in exam and mTOT ¼∑γ

i ¼ 1mk. As can be seen, the Multistep
approach increases complexity in the number of observations instead
of the number of parameters, with a clear advantage in terms of

Fig. 4. In the ‘cascade VM’ scenario, single-step Virtual Metrology modules are
producing information for some of the previous process steps. The predicted values
are then incorporated in the input space.

Fig. 5. Tree structure of the production flow in a Multi-Step problem with 4 CVD,
3 lithography and 4 etching tools.
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computational effort. The multilevel approach introduced here can be
integrated with the regularization methods described in Section 2.2
as shown in [17] (see [17] for further details).

The approach described above is named as Process-based Multi-
step. Its main benefits are the following:

� it allows to include data from steps for which no measurements
are available, or whose measurements are devoid of meaning
with respect to the target step;

� it provides all the available information to the learning
algorithms.

The main drawback of the approach is that the input space
dimension is significantly increased, and a larger number of
observations are likely to be required to estimate the predictive
model.

In the next subsection we present a simplified version of
the approach, where a different definition of the input matrices
related to the previous steps in the production line is used.

3.2. Cascade multistep

We assume that for all the k tools in the production flow of
interest before the last process, a ‘single step’ VM system (Fig. 4) is
in place, that provides an estimation vi;k of an important wafer
feature/parameter. We stress here that the various ‘single step’ VM
systems in place have to be considered as an existing a priori
condition in the design of the Multistep VM system, that is, there
is no possibility of choosing the algorithms used to perform such
VM steps.

We exploit the availability of the VM prediction vi;k to summar-
ize all the information regarding the process performed in equip-
ment k with a single parameter (or more than one in the case of
multi-output VM systems). In this approach, the entries of the
input vector xi in (7) are defined as follows:

xi;k ¼
vi;k if koγ
process and logistic data if k¼ γ

(
ð8Þ

The input matrices are therefore populated only with the previous
Virtual Metrology predictions for equipments that do not belong
to the target step, and with all the available information (sensor
and logistic data) for the last step.

We call this approach Cascade Virtual Metrology as it allows to
build a pipe system in which the predictive information is forward
propagated to concur to further model estimations. The main
advantage of this methodology is the small overhead appended to
the input space, an useful feature to ease the model selection
process and reduce the computational burden. Conversely, the two
main drawbacks of this approach are the following:

� Virtual Metrology systems must already be in place for steps
that precede the target step.

� Using VM information as an input (usually, some weighted
combination of process parameters) may lead to information
loss between two or more steps.

A problem may arise if the prediction performance of the VM
models providing the estimations used as input deteriorates after
the Multi-step VM model has been computed. A solution to this
issue may be to periodically recompute the Multi-step VM model
(accordingly to computational capabilities and production require-
ments) once the solution is implemented on-line.

In Fig. 6 it is reported a flowchart of the proposed methodologies.

4. Experimental results

To validate the proposed Multistep VM approaches, a dataset
provided by a semiconductor manufacturing industry1 regarding
production wafers is employed as a benchmark. Such dataset has
been collected considering the following production flow, that
consists of 3 deposition steps and 1 lithography step:

(i) Chemical Vapor Deposition (CVD): A process in which a thin
film of solid material is produced on the surface of a wafer.
The quality of the deposited layer is usually evaluated by
measuring its thickness (THK) and uniformity (typically the
standard deviation of various measurements performed at
different coordinates on the wafer).

(ii) Thermal Oxidation: A process in which multiple wafers are
heated (usually in a furnace) to produce a thin layer of
oxide by forcing an oxidizing agent to react with the wafer
materials.

(iii) Coating: A process in which the wafer is covered by a viscous
solution of photoresist that is rapidly removed in order to
produce a thin layer.

(iv) Lithography: This process allows to remove predefined parts
of the wafer substrate by means of photomasks. In this way,
geometric patterns are transferred on the photoresist. The
results of this operation are evaluated by measuring geo-
metric features (e.g. height, width, depth) of the created
pattern that are named Critical Dimensions (CDs) [34].

The VM target is a particular CD after lithography. The available
dataset of n¼583 samples consists of data from 4 CVD tools (A, B, C
and D), 2 Thermal Oxidation tools (E and F) and a single coating
and lithography machine. The samples distribution is detailed
in Table 1.

We evaluate the performance of the two different Multistep (MS)
VM approaches (process based and cascade) and two Regularization
algorithms (Ridge Regression and LASSO, described in Section 2.2). It
should be noted that the only tuning knob for RR and LASSO is the
hyperparameter λ: the value of the regularization parameter has to be
chosen to maximize the prediction performances.

To evaluate the importance of considering multiple processes
to enhance VM predictions, we consider several combinations of
the available processes:

� Lithography: Data regarding the lithography process only (that
is, the classical ‘single step’ VM approach).

Fig. 6. Flowchart of the different multi-step methodologies.

1 Courtesy of Infineon Technology AG, Austria, Villach facility.
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� CVD, Lithography: Data regarding CVD and Lithography.
� CVD, Oxidation, Coating: Data regarding CVD, Thermal Oxida-

tion and Coating.
� Full information: Data regarding CVD, Thermal Oxidation, Coat-

ing and Lithography.

The sizes of the aforementioned datasets are summarized in
Table 2.

Cross-validation is then employed, with a twofold purpose,
namely, to tune the hyperparameter λ and to evaluate the perfor-
mance of the proposed models. Performance is evaluated in terms
of Root Mean Squared Error (RMSE):

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ð1�qÞn ∑

ð1�qÞn

i ¼ 1
ðŷi�yiÞ2

s
; ð9Þ

in this work we chose q¼0.7. Assessing the quality of the model on
a set of observations of the phenomena that has not being used for
model construction is essential to have a fair evaluation of the
prediction performance, especially when only a limited number of
observations are available; for this reason the dataset of n samples
is split in two parts:

� a training dataset (qn samples, where 0oqo1), that is used to
build the model;

� a validation dataset (ð1�qÞn samples), that is used to assess the
prediction performance of the model.

The splitting between training and validation sets can strongly
affect the performance and the outcome of the tuning procedure.
This issue can be dealt with by resorting to Repeated Random
Sub-Sampling Validation [35], also known as Monte Carlo cross-
validation (MCCV). A set of K MCCV simulations consists of
performing an analysis on K different random splits of the
available observations into training and validation datasets: K
different models are built accordingly and the performance of
the proposed methodology is assessed as the average model
performance over K simulations. In this way, the MCCV procedure
yields an evaluation of modeling performance that is not affected
by the particular partition of the dataset.2

To achieve stable MCCV estimates, the number K of simulations
needs to be relatively large – in the order of hundreds/thousands.
In this work, K¼1000 MC simulations have been performed. The
hyperparameter λ is tuned for both Ridge Regression and LASSO to
minimize the RMSE over the K MC simulations on the validation
data set.

Before analyzing the performance of the proposed multi-level
approaches, we show how classical VM approaches behave when
multiple sources are considered. The single step VM (Lithography)
has been compared with two multi-sources approaches that
considered also the previous steps (CVD, Oxidation, Coating):

� 1-path: where all the observations, independently from the
logistic path, have been modeled together;

� all-paths: where all the logistic paths (8 paths) have been modeled
separately and then the performance is averaged.

The average results over the MC simulations are reported in
Table 3, while in Fig. 7 (for RR) and Fig. 8 (for LASSO) are reported
the boxplots of the RMSE at the value λn:

λn ¼ arg min
λ

1
K

∑
K

i ¼ 1
RMSEiðλÞ;

where RMSEið�Þ is the RMSE obtained at the i-th MC simulation. In
the case of Cascade multi-step, it is assumed that early stage VM
modules are already in place, as is typical of present day fab
environments. We remark here that such VM modules are indivi-
dually designed to achieve a specific goal, without considering the
possibility of using their estimates as inputs of other VM modules
that may be placed downstream the process flow, or added
afterwards. As a consequence, their output vi;k (whatever the
employed modeling approach) has to be fed to both multi-
sources VM schemes, employing LASSO and RR. In the specific
situation at hand, the vi;k have been computed via RR (Fig. 8).

Observe that multi-sources modeling exhibit worse perfor-
mance than one source VM, in particular in the all-paths approach,
where the availability of few samples for the singular logistic paths
translates in poor prediction capabilities of the models.

We consider now the performance of multi-level techniques:
the results are summarized in Table 4. Some remarks are in order:

� the proposed Multistep VM strategies allow to improve the
performances of classical VM approaches;

� the process data of the target process alone still performs fairly
well: intuitively, excluding data from the target step yields the
worst results;

� Ridge Regression outperforms LASSO in most cases for the
dataset at hand; this might be due to the presence of important
collinearities in the input space, where the natural averaging
properties of the Ridge Regression can act as a noise-mitigating
filter;

� for both algorithms (Ridge Regression and LASSO), the best
overall performances were obtained considering all process
steps (CVD, Coating, Oxidation and Lithography);

� the Cascade strategy obtains the best results, compared to the
most complete approach: this peculiar outcome might be
attributed to the small sample size with respect to the input
space dimensionality.

To assess the statistical significance of the results reported in
Table 4 the test mean on the errors obtained with single step and
multi-step (the best between cascade and process-based) with
full information has been computed.3 In the case of LASSO the
resulting p-value was equal to 0.0002 while for RR p¼0.0001,
therefore indicating that the obtained results are statistically
significant.

The experimental/tuning simulations are reported in Fig. 9
(Process-based with RR), in Fig. 10 (cascade with RR), in Fig. 11

Table 1
Sample sizes of the considered datasets.

CVD tool A A B B C C D D
Thermal oxidation tool E F E F E F E F
# of samples 91 125 149 14 31 26 86 61

Table 2
Regressors sizes of the considered datasets.

Dataset name # regressors

Lithography 827
CVD, Lithography 1034
CVD, Oxidation, coating 305
Full Information 1132

2 It has been shown [36] that MCCV is asymptotically consistent resulting in
more pessimistic predictions of the test data compared with full cross-validation. 3 Welch's t Test has been employed in the computation of the p-values.
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Table 3

Minimum RMSE ½10�3� for different modeling approaches. In bold the minimum
values for each experiment.

Method MS approach Lithography 1-path all-paths

RR Process-based 91.59 92.01 100.81
RR Cascade 91.59 91.63 99.476
LASSO Process-based 99.53 100.85 101.11
LASSO Cascade 99.53 99.54 100.87
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Fig. 7. Boxplot of the RMSEs at λn with RR. Notation: Process (P) and Cascade
(C) based – Lithography (Litho) – CVD, Lithography (CL) – CVD, Oxidation, Coating
(COC) – Full Information (Full).
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Fig. 8. Boxplot of the RMSEs at λn with LASSO. Notation: Process (P) and Cascade
(C) based - Lithography (Litho) - CVD, Lithography (CL) - CVD, Oxidation, Coating
(COC) - Full Information (Full).

Table 4

RMSE ½10�3� of Multi-Level approaches. In bold the minimum values for each
experiment.

Method MS approach Fig. Litho CVD, Litho CVD, Oxid., coating Full Info

RR Process-based 9 91.59 91.17 101.41 91.01
RR Cascade 10 91.59 91.11 101.41 90.55
LASSO Process-based 11 99.53 98.85 101.31 98.85
LASSO Cascade 12 99.53 99.94 101.41 99.94
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Fig. 9. Averaged (over K¼1000 MC simulations) RMSE as a function of λ for
Process-based Multistep VM with RR.
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Fig. 10. Averaged (over K¼1000 MC simulations) RMSE as a function of λ for
Cascade Multistep VM with RR.
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Fig. 11. Averaged (over K¼1000 MC simulations) RMSE as a function of λ for
Process-based Multistep VM with LASSO.
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(Process-based with LASSO) and in Fig. 12 (cascade with LASSO),
where the behavior of RMSE as a function of λ is shown.

5. Conclusions

In this paper, a novel strategy for Virtual Metrology in semi-
conductor manufacturing has been proposed. The proposed Multi-
Step Virtual Metrology approach consists in using information
about previous process step(s), as process data, logistic data, and
virtual and actual measurement values, jointly to the current
process information, to improve the precision and the accuracy
of the VM system.

The proposed approach is based on regularization methods
(Ridge Regression and LASSO) and multi-task learning techniques
to deal with the two most prominent issues in VM modeling:

� high dimensionality;
� data fragmentation.

The aforementioned issues are amplified if we try to gather
information from multiple processes instead of considering just
the VM target related process.

To cope with the previous issues, two different Multi-Level
strategies have been proposed, namely

(i) Process-Based Multi-Step, where the overall collected infor-
mation during all process steps are used as input of the VM
module;

(ii) Cascade Multi-Step, where intermediate VM estimations are
used to summarize the information related to previous pro-
cesses before the last one in the line.

These methods have been tested on a production dataset
associated with a four-step process flow (CVD, Thermal Oxidation,
Coating, Lithography) that are in series in the wafer production,
generally considered to influence variability of the Critical Dimen-
sion in the Lithography, that represents the VM target. Four
different combinations of data sources have been considered to
evaluate the performances of the multi-step approach with
increased complexity and dimensionality of the problem.

Results show that VM performance can be improved by
enriching the dataset with information related to past processes.
The evaluation of VM system quality is mainly provided by the
accuracy of the predictions [19,37,38]. If the predictions are

considered accurate enough, then they can be used instead of real
measurements in cost reduction policies. For this reason, even
relatively ‘small’ improvements in VM prediction quality are
considered highly valuable in this application setup.

The drawbacks of the proposed framework w.r.t. classical VM
solutions are related to the availability of previous step data
and the increased modeling complexity. However, both issues
are usually manageable in modern semiconductor manufacturing
environments. It should be also remarked that care must be taken
when designing multi-step strategies. The inclusion of information
related to more process steps can be usually associated to an
enrichment of the dataset, however, over complicated modeling
settings may lead to poor prediction accuracy. For this reason,
sample size and a priori knowledge (if available) on the relevance
of a process in the past to the VM target under exam should always
be considered before implementing a multi-step VM strategy.
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